文澜金融论坛(第282期)
主讲人: | 陈亮 博士 北京大学汇丰商学院 |
主持人: | 孙宪明 博士 中南财经政法大学金融学院 数字技术与现代金融学科创新引智基地 |
时间: | 2023年9月27日(周三)10:00-11:30 |
地点: | 文泉楼南408会议室 |
摘要:
Quantile factor models (QFM) represent a new class of factor models for high dimensional panel data. Unlike approximate factor models (AFM), which only extract mean factors, QFM also allow unobserved factors to shift other relevant parts of the distributions of observables. We propose a quantile regression approach, labeled Quantile Factor Analysis (QFA), to consistently estimate all the quantile-dependent factors and loadings. Their asymptotic distributions are established using a kernel-smoothed version of the QFA estimators. Two consistent model selection criteria, based on information criteria and rank minimization, are developed to determine the number of factors at each quantile. QFA estimation remains valid even when the idiosyncratic errors exhibit heavy-tailed distributions. An empirical application illustrates the usefulness of QFA by highlighting the role of extra factors in the forecasts of U.S. GDP growth and inflation rates using a large set of predictors.
主讲人介绍:
陈亮,北京大学汇丰商学院助理教授,主要研究领域有计量经济学理论,应用计量经济学等。在Econometrica, Journal of Econometrics, The Econometrics Journal, Econometric Theory等国际知名期刊发表多篇论文。